A new convergent MAP reconstruction algorithm for emission tomography using ordered subsets and separable surrogates

نویسندگان

  • Ing-Tsung Hsiao
  • Anand Rangarajan
  • Gene Gindi
چکیده

We investigate a new, fast and provably convergent MAP reconstruction algorithm for emission tomography. The new algorithm, termed C-OSEM has its origin in the alternating algorithm derivation of the well known EM algorithm for emission tomography. In this re-derivation, the complete data explicitly enters the objective function as an unknown variable. While the entire complete data gets updated in each iteration of EM, in C-OSEM the complete data is updated only along ordered subsets. C-OSEM has a straightforward extension to the MAP case especially when using convex, smoothing priors. Unlike RAMLA and BSREM, C-OSEM does not require relaxation parameters to be set at each iteration. We derive the MAP C-OSEM algorithm using the separable surrogate method and anecdotally compare performance with MAP EM and BSREM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ordered Subsets Algorithm for Transmission Tomography

The ordered subsets EM (OSEM) algorithm has enjoyed considerable interest for emission image reconstruction due to its acceleration of the original EM algorithm and ease of programming. The transmission EM reconstruction algorithm converges very slowly and is not used in practice, particularly because there are faster simultaneous update algorithms that converge much faster. We introduce such a...

متن کامل

Globally Convergent Ordered Subsets Algorithms: Application to Tomography

We present new algorithms for penalized-likelihood image reconstruction: modified BSREM (block sequential regularized expectation maximization) and relaxed OS-SPS (ordered subsets separable paraboloidal surrogates). Both of them are globally convergent to the unique solution, easily incorporate convex penalty functions, and are parallelizable—updating all voxels (or pixels) simultaneously. They...

متن کامل

Ordered subsets algorithms for transmission tomography.

The ordered subsets EM (OSEM) algorithm has enjoyed considerable interest for emission image reconstruction due to its acceleration of the original EM algorithm and ease of programming. The transmission EM reconstruction algorithm converges very slowly and is not used in practice. In this paper, we introduce a simultaneous update algorithm called separable paraboloidal surrogates (SPS) that con...

متن کامل

Fast Globally Convergent Reconstruction in Emission Tomography Using COSEM, an Incremental EM Algorithm

We present globally convergent incremental EM algorithms for reconstruction in emission tomography, COSEMML for maximum likelihood and COSEM-MAP for maximum a posteriori reconstruction. The COSEM (Complete data Ordered Subsets Expectation Maximization) algorithms use ordered subsets (OS) for fast convergence, but unlike other globally convergent OS-based ML and MAP algorithms such as RAMLA (Bro...

متن کامل

An overview of fast convergent ordered-subsets reconstruction methods for emission tomography based on the incremental EM algorithm.

Statistical reconstruction has become popular in emission computed tomography but suffers slow convergence (to the MAP or ML solution). Methods proposed to address this problem include the fast but non-convergent OSEM and the convergent RAMLA [1] for the ML case, and the convergent BSREM [2], relaxed OS-SPS and modified BSREM [3] for the MAP case. The convergent algorithms required a user-deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002